ECMO in the Emergency Department in a Patient with Refractory Shock

Moises Bravo, Manuel A. Celedon, MD and Derrick Darnsteadt, MD

Case Summary

A 28-year-old female (Gravida 1 Para 1) at 11 weeks of gestational age presented with abdominal cramps and heavy vaginal bleeding. She had taken misoprostol 4 days prior to her emergency department (ED) arrival. The patient reported waking up that morning feeling ill with a large amount of blood and tissue around her vagina. Associated symptoms included abdominal cramping, nausea, non-bloody non-bilious vomiting, shortness of breath, and fever.

Initial vitals on arrival were a temperature 97.2°F, blood pressure 106/52 mmHg, heart rate 108/min, respiratory rate 18/min and oxygen saturation of 92% on room air. Evaluation by the Emergency Medicine Physician shortly after arrival revealed a patient in severe distress with mottled skin, hypotension (90/50 mmHg), and severe tachycardia (HR 170). Given concern for hemorrhagic shock, emergent intravenous access was placed via a “crash” right femoral central venous cordis catheter and transfusion of type O- blood was initiated empirically. ED point-of-care ultrasound revealed a “flat” inferior vena cava (IVC), hyperdynamic cardiac function without evidence of pericardial effusion, and a negative Extended Focused Assessment with Sonography in Trauma (eFAST). During the resuscitation, the patient became progressively more hypoxic and altered requiring emergent endotracheal intubation.

There was increasing difficulty oxygenating the patient despite maximum levels of inspired oxygen and positive end-expiratory pressure (PEEP). She also required multiple vaspressors to maintain her blood pressure. She became pulseless multiple times during the resuscitation and received cardiopulmonary resuscitation (CPR) of up to 6 minutes each episode to obtain return of spontaneous circulation. After discussion with the pulmonary critical care consultant, it was determined that the patient may benefit from Extracorporeal Membrane Oxygenation (ECMO).

Criteria

1. The best outcome in ECMO for adult respiratory failure occurs when ECMO is instituted early after onset (1-2 days):
 a. In hypoxic respiratory failure from any cause (primary or secondary) extracorporeal life support (ECLS) should be considered when the risk of mortality exceeds 50% and is indicated when the risk of mortality is 80% or greater.
 i. 50% mortality risk is associated with any of the following:
 1. PaO2/FiO2 < 150 on FiO2 > 90%

Background

Utilization of ECMO has increased dramatically in recent years. Its utilization is no longer isolated to the use as a support device in the operating room. It is now seen as a viable intervention for patients who present with either refractory acute cardiac or pulmonary failure. Studies of early ECMO initiation showed improved outcomes. In the ED, it is important for providers to understand the indications, contraindications, and limitations of this therapy. As not all hospitals have the capability of providing ECMO, it is also important to recognize when to transfer patients. This case of undifferentiated shock resulted in activation of a mobile ECMO unit and initiation of ECMO prior to transfer to a hospital capable of managing ECMO patients.
2. Murray score 2-3
3. Age-adjusted Oxygenation Index (AOI) score 60
4. Age, PaO2/FiO2, plateau pressure score (APPs) 5-7

ii. 80% mortality risk is associated with any of the following:
1. PaO2/FiO2 < 100 on FiO2 > 90%
2. Murray score 3-4
3. AOI >80
4. APPS 8, despite optimal care for 6 hours or less.

b. CO2 retention on mechanical ventilation despite high plateau pressure (Pplat) (>30 cm H2O).
c. Severe air leak syndromes.
d. Need for intubation in a patient on lung transplant list.
e. Immediate cardiac or respiratory collapse (PE, blocked airway, unresponsive to optimal care).

Relative Contraindications

Each situation is considered individually, although the following are associated with poor outcomes despite ECMO:

1. Mechanical ventilation at high settings (FiO2 >0.9, Pplat >30) for 7 days or more. Although many centers do not consider extended time on a ventilator a contraindication.
2. Major pharmacologic immunosuppression (absolute neutrophil count <400/mm3).
3. CNS hemorrhage that is recent or expanding.
4. Nonrecoverable comorbidity such as major CNS damage or terminal malignancy.
5. Advanced Age; although there is no specific cut-off, risk increases with increasing age.

Outcomes

ECMO was traditionally utilized in the intensive care unit but has increasing interest in other settings, including the ED. ECMO in the emergent setting can be further distinguished based on specific indication and configuration. Utilization of ECMO in the ED can be divided into pulmonary versus cardiac system support. VV ECMO provides an alternative treatment of patients in acute respiratory failure, secondary to reversible causes, such as acute respiratory distress syndrome (ARDS). The Conventional Ventilatory Support vs ECMO for Severe Adult Respiratory Failure (CESAR) trial provided important data that increased interest in the use of ECMO. The CESAR trial reported patients referred to ECMO centers had increased survival, without disability, six months post-intervention. More recently, the ECMO for Severe ARDS (EOLIA) trial compared the use of VV ECMO vs conventional mechanical ventilation strategies in the treatment of severe ARDS. Although the trial was stopped early due to no improvement in preliminary data for VV ECMO, final analysis did not show a significant difference, in 60-day mortality. A meta-analysis examined 28 randomized controlled trials examining treatment for moderate to severe ARDS. Patients treated with prone positioning and VV ECMO had a lower 28-day mortality compared to conventional mechanical ventilation alone. Patients on VV ECMO had improved oxygenation, increased period of time free of renal failure, and fewer incidents of ischemic stroke.

Extracorporeal cardiopulmonary resuscitation (ECPR) refers to the use of VA ECMO as an intervention for cardiac arrest, after traditional resuscitative measures have been exhausted. The ultimate goal of ECPR is to prevent irreversible hypoxic end-organ damage. Based on observational studies, the factor that determines positive outcomes is the time interval between initial cardiac arrest and initiation of ECPR. This time interval is known as the low-flow time. Shorter low-flow times were associated with better outcomes, including a higher survival rate to discharge compared to long-flow times. A meta-analysis compared the survival rate to discharge and long-term neurological outcomes in patients that underwent ECPR versus conventional cardiopulmonary resuscitation (CPR). Outcomes were analyzed at different intervals, including at the time discharge, at 3-6 months post event, and 1-year post event.

Patients who underwent ECPR showed better overall outcomes. Another meta-analysis showed a negative trend in survival in patients who had CPR administered >30 minutes without early ECPR initiation. Other implementations of ECMO in the ED include extracorporeal life support (ECLS). This method describes the use of ECMO as a temporizing measure in critically ill patients. ECLS is primarily used in patients who at first may not be stable enough to undergo other forms of cardiac support, such as placement of a left ventricular assist device (LVAD). An observational study found that patients who survived the ECLS bridge to LVAD placement had an 80% 1-year survival rate. Observational studies in the use of VA ECMO in the treatment of refractory cardiogenic shock reported early support can rescue up to 40% of otherwise fatal cases. Among the survivors of cardiogenic shock treated with ECMO, patients without sequelae reported a higher quality of life compared to patients on chronic hemodialysis or heart failure.

Future Direction of this Procedure in the ED / and Medicine in General

Emergency medicine physicians are at the frontlines of patient resuscitation. Utilization of every treatment modality available is critical in providing an environment for success. Although not every medical facility can provide ECMO, all physicians should be aware of its capabilities and limitations. Providers should have this modality in mind as a possible intervention when conventional resuscitative efforts are unsuccessful. Recognizing appropriate candidates early in their hospital course will minimize delays in getting other specialties involved to initiate ECMO, activate a mobile ECMO team, or to initiate the transfer process to an ECMO-equipped facility. The procedure is not free of risks and should not be done without thorough assessment, however, earlier utilization is key when conventional treatments have failed. ECMO has come a long way since it was introduced and has now gained broader
adoption given positive outcomes. Further studies are needed to establish standardized criteria for patient selection in the ED, examining both survival and post-intervention quality of life.

Case Conclusion and Brief Discussion

VA ECMO was successfully started in the ED and the patient was transferred to an ECMO capable tertiary care hospital via the mobile ECMO team. While at the tertiary care center, the ECMO team was unable to maintain adequate flow and the patient required extensive vasopressor support. A family meeting was held to discuss goals of care and the family agreed not to escalate care and to transition toward palliative comfort care. The patient expired soon after and autopsy was declined. No etiology was determined for her decompenensation.

VA ECMO was the ideal intervention for our patient given the need for both cardiac and pulmonary support. She had failed conventional management to maintain perfusion and was requiring multiple vasopressors and resuscitative adjuncts as well as intermittent CPR. She could not maintain oxygenation, despite maximum levels of FiO2 and PEEP. There were no contraindications to ECMO and early initiation of ECMO was an appropriate intervention given the patient grave condition.

REFERENCES

