CLINICAL REVIEW

Decreasing Inappropriate Use of Cardiac Telemetry

Sajan Patel, M.D.; Myung Shin Sim, DrPH; Erin Dowling, M.D.

Introduction

Telemetry, or continuous cardiac monitoring, was developed in the 1960s to monitor for arrhythmias after myocardial infarction. Since then, indications for cardiac monitoring have broadened and its use has significantly increased. Currently, telemetry is overused in hospitals and continues to be a significant source of health system waste. It is considered a leading issue in quality initiatives, as highlighted by its presence in the top five recommendations by the Society of Hospital Medicine to the ABIM Choosing Wisely Campaign.

The overuse of telemetry is likely due to physician uncertainty regarding patient trajectory, unawareness of established indications, and a misconception that telemetry implies a higher level of care. Inappropriate use leads to increased costs, increased wait time for telemetry beds, unnecessary work-up of insignificant arrhythmias, and patient discomfort. Multiple studies have targeted telemetry use, involving hard-wiring guidelines into the electronic health record (EHR), educational campaigns, and discontinuation protocols.

We conducted a targeted educational study to evaluate the use of telemetry and the effect of an educational intervention on telemetry utilization among residents at a university-affiliated teaching hospital.

Methods

We studied the medicine admissions of UCLA Internal Medicine residents rotating through the Hospitalist rotation at Santa Monica/UCLA Medical Center from November 21, 2013 to May 3, 2014 (6 distinct rotation blocks were covered). Sources of admissions to the Hospitalist Service at this institution are two different UCLA emergency departments, UCLA clinics, and outside hospital transfers. Teams on the Hospitalist rotation consist one to two second or third year internal medicine residents, an attending physician, and a rotating post-call nurse practitioner (NP) who serves as the day float to carry out tasks after the resident leaves. The NP is present during post-call rounds and has no role in the admission process. The residents are on call every sixth night, and they typically staff all admissions the morning after call. Thus, the resident acting alone is responsible for the initial admission orders, including telemetry.

Three blocks of the study (November, February, and April) were dedicated to baseline data collection. The post-call NPs collected data on all admissions by the residents including admission source, telemetry status, and telemetry indication. For the other three blocks (December, January, and March), half the Hospitalist residents were randomly selected to be in the intervention arm. They received a 10-minute, standardized in-person slide-show presentation on telemetry overuse and appropriate indications based on published guidelines. They also received a pocket reference card (Figure 1). The residents in the non-intervention arm, working in parallel to the residents in the intervention arm, were unaware of the study. The study was designed to evaluate the effectiveness of the intervention for future use. The protocol was submitted to the Institutional Review Board (IRB) and was determined to not need full IRB review.

The NPs were trained on the study protocol and recorded data during rounds on admissions regarding telemetry status, telemetry indication, and telemetry appropriateness based on the list of indications (Figure 1). Any telemetry admissions coded as “unclear” or “inappropriate” by the NPs were reviewed by the study authors, who performed chart review to determine presumed indication.

After the study, we conducted a program-wide survey of Internal Medicine residents regarding their opinions on telemetry use and comfort with indications (See Supplement 1).
Statistical Methods

A Chi-square test was used in comparing percentages and examining associations between categorical variables. Univariable and multivariable logistic regression analyses were performed using telemetry as an outcome variable. The initial multivariable model included admission source, intervention, resident, and block along with interactions between main effects. For those who were admitted to telemetry, logistic regression analysis was done using appropriate telemetry admission as an outcome variable and incorporating admission source, intervention, and resident along with interactions between main effects as covariates. The most parsimonious model was obtained thru a stepwise (backward and forward combined) selection method using likelihood ratio tests and by comparing Akaike information criteria (AIC). All the tests were 2 sided and a p-value of less than 0.05 was considered statistically significant. All the statistical tests were performed using SAS 9.4 (Cary, NC).

Results

Data on 642 admissions were collected. Of these admissions, 52% (333/642) were put on telemetry, and 34% (112/333) of telemetry use was determined to be inappropriate based on published guidelines. With no intervention, 56% of admissions were put on telemetry, whereas with intervention, 40% were put on telemetry (p=0.0004), representing a 16% absolute reduction in telemetry use. When looking at practice of initiating telemetry and adjusting for admission source, the adjusted OR and unadjusted OR (no intervention versus intervention) were 1.87 (1.30, 2.70; P<0.001) and 1.90 (1.33, 2.72 ; P<0.001), respectively. The final model, using telemetry as an outcome variable, showed that intervention (P<0.001) was significantly associated with initiating telemetry. Those who did not receive the educational intervention were 87% more likely to put patients on telemetry.

Without intervention, 63% of telemetry use was appropriate, whereas with intervention, 79% of telemetry use was appropriate (p=0.014). This represents a 16% absolute increase in appropriate telemetry use (Table 1). When looking at appropriate use, the adjusted OR (adjusting for admission source) and unadjusted OR of intervention versus no intervention were 2.08 (1.08, 4.00; P=0.029) and 2.21 (1.17, 4.19 ; P=0.015), respectively.

The final model, using appropriate telemetry as an outcome variable, shows that the educational intervention (P=0.033) was significantly associated with appropriate telemetry. Those who received this intervention were 2.03 times more likely to be appropriate in putting patients on telemetry.

Of the Internal Medicine residents who responded to the survey (74/113), 92% felt that telemetry is overused, and 72% felt that they personally overused telemetry. In addition, 89% indicated that they would be interested in learning more about telemetry guidelines and appropriate use, and most (92%) would welcome guideline integration into the EHR.

Discussion

Our study showed that the Internal Medicine residents at UCLA-Santa Monica Medical Center overused telemetry. However, a relatively simple and inexpensive educational intervention led to a significant improvement in inappropriate telemetry use. If sustained, these results could translate to a reduction in cost, waste of health system resources, and an improvement in patient experience. In addition, based on survey responses, these interventions appear to be favorably received and desired by the residents.

Previous studies have attempted to curb telemetry use with various results. In recent literature, the most marked reduction in telemetry use was seen at Christiana Care System, which achieved this by hardwiring guidelines into their ordering system and by telemetry auto-discontinuation. An educational or awareness campaign was not part of their intervention. In another recent study, the authors reduced default telemetry order duration from 72 to 48 hours. However, this led to increased telemetry re-ordering rather than actual reduction in duration. Kanwar et al. successfully decreased use with a combination of educational intervention and telemetry ordering restrictions. Of note, the authors of this study used admission diagnosis to judge if telemetry indication was appropriate and thus may have overstated their intervention effect.

We believe efforts to reduce telemetry at academic institutions require a multi-pronged approach. Educating residents and attending physicians on the importance of telemetry stewardship and familiarizing them with guidelines leads to a sense of personal responsibility, which could translate to sustainability. To ensure our particular intervention is long-lasting, we will be providing all housestaff with guideline pocket cards and incorporating our telemetry overuse presentation into housestaff orientations. By combining our educational intervention with EHR integration (including ordering restrictions as well as reminder and auto-discontinuance protocols), we believe we can effectively and sustainably reduce telemetry use.

Our study also identified a significant difference in the admission patterns of telemetry use depending on admission source. While outside the scope of this particular intervention, this is relevant for future studies within our institution and those that have similar operational models. It provides further evidence that clinical pathways, embedded into the EHR in combination with ongoing education, are needed to assure telemetry use is limited to clinically indicated cases.

There are several limitations to our study. It is a single-center study and thus the ability to generalize to other institutions is limited. Given that it is an educational intervention, effects will taper over time unless the intervention is regularly repeated. In addition, we did not investigate counter-balancing outcomes of decreased telemetry utilization among this cohort, including change in adverse events.
Conclusion

Reducing inappropriate telemetry use is an attainable and worthwhile goal. Prior studies have shown success with EHR integration and discontinuation protocols, while our study demonstrated the efficacy of an educational intervention. We believe sustainable telemetry reduction can be best achieved by combining these two modalities to develop a culture of telemetry stewardship among health care providers while harnessing the power of electronic health records to restrict use.

Tables and Figures

Table 1. Effect of Educational Intervention on Telemetry Use and Appropriateness

<table>
<thead>
<tr>
<th></th>
<th>Without intervention</th>
<th>With intervention</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Admissions to telemetry</td>
<td>56% (266/475)</td>
<td>40% (67/167)</td>
<td>0.0004</td>
</tr>
<tr>
<td>Appropriate telemetry use</td>
<td>63% (168/266)</td>
<td>79% (53/67)</td>
<td>0.0135</td>
</tr>
</tbody>
</table>

Figure 1. Supplemental.

The figure provides a table summarizing the effect of a telemetry educational intervention on the use of telemetry and its appropriateness.

Figure 2. Telemetry guidelines for non-critical care admissions.

The figure illustrates the guidelines for telemetry use in non-critical care settings, which are critical for healthcare providers to follow for appropriate use.

References

Submitted May 31, 2016